Quiz rules:
1. You may bring one “cheat sheet”, handwritten, not photocopied or computer-generated, front and back OK. Show it to me before you start. No other books, notes, etc.
2. Bring a scientific calculator (logs and antilogs (10 to the x); sines and cosines, square roots). No constants or formulas in the memory!
3. Sign the pledge – no cooperative work during the quiz, obviously.

Constants you should memorize:
- Speed of light (3 E5 km/s);
- 1 AU = 1.5 E8 km ;
- 1.6 km = 1 mile;
- 1 radian \(\cong\) 57.3 deg

Constants you should have on your cheat sheet:
- Charge of one electron: 1.6 E-19 J;
- \(\sigma\) = 5.67 E-8 W/(m\(^2\)-K\(^4\));
- \(h\) = 6.62 E-34 (J-s)

Be able to calculate:
1. Total luminosity of the Sun given the light energy flux at Earth (\(\cong\)1.4 kW/m\(^2\)).
 \[L = (1.4) (4 \pi) AU^2 \text{ (W)} \] (be sure to make units come out correctly!)
2. The ratio of brightnesses of stars, given each one’s apparent magnitude
 \[(2.5) \log (b_1 / b_2) = m_2 – m_1 \]
3. This distance of a star (or galaxy!) given its apparent magnitude \(m\) and absolute magnitude \(M\)
 \[\text{distance modulus } \mu = m – M = \log (D /10 \text{ pc}) = \log (D/1 \text{ pc}) - 1 \]
4. The distance to an object \(D\) given its parallax \(\alpha\) and baseline \(d\), or vice versa.
 \[\tan (\alpha) = d / D. \quad \text{For small angles, tan (\alpha) } \sim \sin (\alpha) \sim \alpha , \text{ if it is measured in RADIANS}. \]
 (note: this is the same formula for the angular size of an object (\(\alpha\)) if its actual size is \(d\) and distance \(D\).)
5. The wavelength of light (or sound!) given its frequency or vice versa
 \[\lambda = c / f \quad f = \text{frequency} \quad \lambda = \text{wavelength (m / oscillation)} \]
 1 Hz = 1 osc/sec and \(c\) is the speed of light or sound, as appropriate.
6. The line-of-sight speed from the Doppler shift and vice versa. (non-relativistic)
 \[\Delta \lambda / \lambda = \Delta f/f = v/c \quad \text{where } c \text{ is the speed of sound or the speed of light, depending on whether you are talking about a sound wave or a light wave.} \]
7. The amount of energy emitted by a black body per square meter of its surface is
 \[J = \sigma T^4, \text{ where } \sigma \text{ is the Stephan-Boltzmann constant = 5.67 E-8 W/(m}^2\text{-K}^4) \text{ and } T \text{ is the temperature in Kelvins (0K = absolute zero = -273C)} \]
8. The redshift of a distant galaxy given its distance \(D\), or vice versa.
 \[V (\text{km/s}) = H \ D \quad \text{Where } H \text{ is approximately 71 km/s / MPc} \]
9. The energy of a photon, given its frequency
 \[E = h f = (h \omega)/2\pi \quad \text{where } h \text{ = Planck’s constant = 6.62 E-34 (J-s)} \]
 \((\omega \text{ is the frequency in radians per second}).\)

Be able to explain:
1. The difference between a continuous spectrum and an emission line spectrum. Which one is associated with a black body? Which with a thin gas? What is the name of the spectrum you observe when the light from a black body passes through a thin gas? Which kind of spectrum tells you the temperature? Which the composition? Which most accurately gives the line-of-sight speed?
2. How the brightness versus temperature relationship of a cluster of stars can give you the distance to the cluster. How the color of the brightest star gives you the age of the cluster.
3. Why big stars are hotter than little stars
4. Why big stars use up their nuclear fuel faster than small stars.
5. The difference between nuclear fusion and nuclear fission. Which one occurs in stars? Which one in atomic bombs?
6. Which number (Z, A, A-Z) is the number of neutrons, protons, and total in the nucleus?
7. Why are spinning galaxies flat but non-spinning galaxies are more spherical? Which one has more star formation?
8. Why if the galaxy has been expanding at the same rate since the Big Bang, then 1/H gives the age of the Universe, but if it is slowing down, then 1/H is longer than the age of the Universe, and if it’s speeding up, then 1/H is shorter than the age of the Universe.
9. Why the farthest things we can see can be no farther than about c/H.
10. How knowing the rotation speed of a galaxy as a function of distance gives us the total mass inside, and that for most galaxies, the mass you get that way is nearly a factor of ten larger than you would estimate by counting stars: dark matter.
11. How you calculate the distance of distant galaxies. (parallax is the only accurate measurement, and it only works to a hundred pc or so). After that you use brighter and brighter “standard candles” and use how bright they appear to calculate how far away they must be. Each brighter and brighter “standard candle” requires more assumptions (Cepheid variables have brightness related to their frequency; all type 1 supernovae are about the same luminosity; the brightest galaxy in a group is a standard brightness, etc). This makes the calculations of very distant objects VERY difficult to do, since these errors accumulate and we have to assume that the galaxies shortly after the Big Bang were similar in brightness to galaxies now, which maya not be a great assumption, but it’s the best we can do. That’s why H is uncertain.
12. That if the universe had a higher density, it would slow down, and fall back in on itself. The best estimates are that in fact the density is NOT that high, and in fact the universe appears to be even accelerating its expansion now. This is “dark energy” (different from dark matter) that gives a pressure that seems to increase as the volume of the Universe expands.
13. That neutrinos, which are energetic particles, may have a tiny rest mass that may explain dark matter. (They were initially thought to have no rest mass, like photons).
14. Which celestial coordinate is most like a longitude? Which like a latitude? What is the definition of zero declination? Zero Right Ascension? Why both Right Ascension and declination of a star change VERY slowly as the earth’s spin axis precesses. Why the North Star won’t be at the North Celestial Pole 3000 years from now. Why this is “the Dawning of the Age of Aquarius”.
15. Estimate the Sidereal Time for noon, dusk, dawn or midnight for any month of the year.
16. Why the sidereal day is 4 minutes shorter than the solar day. Which one is the Earth’s true spin period?
17. Know the definitions of Altitude and Azimuth.
18. That the star directly over your head right now has a declination equal to your __________ and has a Right Ascension equal to the current ____________ __________.
19. What is the difference between luminosity and brightness. Which is related to the apparent magnitude? Which is related to the Absolute magnitude?